Skip to main content

Botanists disperse some 'big data'

Recently, Botanists at Trinity College Dublin launched a database with information that documents significant ‘life events’ for nearly 600 plant species across the globe. The database is the result of contributions from individuals working across five different continents, who compiled information on plant life histories for a near 50-year span, and is an example of big data.

What is ‘big data’?
Black pine (Pinus nigra), one of the species whose life
history data is part of the database, is seen against a
stunning backdrop of New Zealand. Credit: Yvonne Buckley.

In academic circles, the buzz-term across all disciplines seems to be ‘big data’, and it means exactly what it sounds like – a whole lot of information. More formally, of course, big data refers to data sets that are so large and complex that traditional methods of processing the information contained within them simply aren't adequate. Big data draw upon many sources of information and represent a body of work that far exceeds what a single researcher, or indeed an entire research group, could gather in their careers.

While there are many challenges of working with big data – storing it, analysing, visualising it and ensuring its integrity to name a few – the benefits of working with such large data sets may make overcoming these challenges worthwhile. Repositories of such vast amounts of information can not only help foster collaborations, but they can be used to answer questions surrounding some of the most complex and pressing issues society currently faces, including climate change, food security, and mass species extinctions.

Of course, what is considered to be big data today will not be big data tomorrow as our management systems and computing capacity improve. This is the inevitable path of technological advancement; the Human Genome Project took over ten years (1990-2003) to sequence the human genome and now it can be done in a day for a fraction of the cost.

The importance of sharing knowledge
Plantago lanceolata at Howth Head, Dublin, Ireland - one of
the near 600 plant species that researchers have gathered
extensive life history data on. Credit: Anna Csergo.

The researchers at Trinity have made their database, called COMPADRE, freely available in the hope that other scientists access the information to advance their research. The size of the database means it can be used to help answer an infinite number of questions – such as how plant communities may respond to climate change or physiological processes that might provide insights into our own aging and health.

“Making the database freely available is our 21st Century revamp of the similarly inspired investments in living plant collections that were made to botanic gardens through the centuries;” said Yvonne Buckley, Professor of Zoology at Trinity’s School of Natural Sciences, “these were also set up to bring economic, medicinal and agricultural advantages of plants to people all over the world. Our database is moving this gift into the digital age of ‘Big Data’.”

The approach of free knowledge sharing is becoming more common and is a critical step toward resolving some of our biggest challenges. The University of Bristol’s Cereal Genomics Group has made the wheat genome along with hundreds of thousands of molecular markers freely available through their searchable database CerealsDB. These data can be used in wheat breeding programmes to develop new varieties of wheat that are more resistant to disease or droughts or produce higher yields.


Our best chance of overcoming some of the global challenges of the 21st Century is to work together. Sharing knowledge through databases, such as COMPADRE and CerealsDB, will ensure every scientific contribution counts towards this united effort.

Comments

Popular posts from this blog

Christmas and the Botanic Garden

Being out and about in the Garden gives a sense of the changing of the seasons, a sense brought about by the combination of light, temperature, wildlife and, of course, plants. This is felt most keenly at this time when we are the furthest from the sun that we will be, until next year. I find mid-winter an uplifting time; leafless trees show their bones and wildlife is easier to spot. It’s amazing how much life is flitting around in an old oak tree when you take the time to look into its branches. The sky seems bigger in winter and the sunsets more vivid. This might just be that we don’t get to see them so much in midsummer, but at this time of year we see the sun rise in the Garden and set in the Garden.
From this moment the days get a little longer and we begin to see movement in the soil, small signposts to spring that don’t occur before midwinter. Snowdrops and winter aconite emerge in January; tiny and fragrant flowers emerge on shrubs such as witch-hazel, Daphne, winter flowerin…

In the guts of bees

By Nicola Temple We hear a great deal about the beneficial bacteria that live in our digestive system and commonly referred to as the microbiome, which help us turn indigestible materials into nutrients that we can absorb. There are countless probiotic products on the market that are meant to introduce more of these beneficial bacteria into our system, enriching our microbiome. However, humans and indeed mammals are not alone in having helpful microflora in the gut.

The microbes that inhabit the guts of social bees has been of particular interest recently. These microbial communities have been studied for their role in bee health, but also as a model organism to help understand the relationship between hosts and their gut microbes, potentially providing insight into our own system.

The specialised cast of microbes The microbiome of bees is relatively simple, but very specialised. There are about eight to ten bacterial species, but different species of bee will carry different strai…

Why doesn't everyone compost?

By Alida Robey
Composting was an inherent part of how we lived when I was growing up – nothing was wasted.  Food scraps went to the chickens, kitchen and garden waste to one of several  compost heaps and leaves were piled into a pit for future leaf-mould.
Today,  I live in a flat with a small decked courtyard. I have access to five compost bins in an area of communal gardens in Clifton (Bristol, UK); this means with almost no effort at all the only rubbish I produce is recycling and an occasional black bag of non-recycleable inorganic waste. I don't even have to keep a compost bin at home. And still each week along my road I see quantities of black bags destined for landfill spilling out onto the pavement with fruit and veg and greenery.  Given the years I have spent trying to coax friends and neighbours in different locations to compost, this scene is a heart-rending weekly reminder of my lack of success in this personal campaign!
So when I was camping a few weeks ago, and had r…