Skip to main content

The evolution of a predatory plant

By Nicola Temple

We keep a Venus flytrap (Dionaea muscipula) in our bathroom. My son begged me for it, which inevitably means I look after it. Having seen these carnivorous little delights in the glasshouses at the University of Bristol Botanic Garden, I have learned that humidity and moisture are key to its happiness - hence it's bathroom location and its constant immersion in a tray of water.

The leaves of  the Venus flytrap, open (foreground) and
wrapped around its prey (background, right).
Photo credit: Shelby Temple
While I mostly leave my son to do the part he loves best - feeding - I can't deny my own fascination with it. The leaves, converted to ambush traps through evolution, have to have enough stimulation by an unsuspecting insect to warrant the plant investing the energy to snap the trap shut.  Once the trap is shut, the plant estimates the size of the prey based on the amount of stimulation of the sensory 'hairs' triggered by the trapped (and no doubt panicked) insect. If there is a sufficient signal from the sensory hairs, the plant starts to produce enzymes and proteins that will help it digest and absorb the prey. It's the stuff of nightmares...for the insect.

So what evolutionary steps transformed a leaf designed to harvest light from the sun into a leaf designed to trap prey? New research published this week in the journal Genome Research has provided some insight into the origins of the Venus flytrap's trap.

It's a leaf with a hint of root and a dash of...tongue?

Professors Rainer Hendrich and Jörg Schultz led a team of scientists from Julius-Maximilians-Universität Wüuzburg (JMU) in Bavaria, Germany who looked at the genes being expressed by the traps. They found that the traps not only had active genes typical of leaves, but also those typically found in roots.

A close up view of the trap, which shows the sensory 'hairs'.
Photo credit: Shelby Temple
There are dome-shaped glands on the surface of the trap. The outer layer of each gland secretes the digestive enzymes, but the middle layer has foldings that increase the surface area - reminiscent of microvilli in the human intestine. It is thought that this is where nutrient absorption takes place. As this is a major function of roots, it is not surprising that some of the same genes are required.

Now...about about that tongue. I mentioned above that the plant releases digestive enzymes if it receives enough stimulation within the closed trap. But what if the insect dies very quickly after being trapped? The plant has a receptor in the trap that can detect chitin - the main constituent of an insect's exoskeleton.  So even if the insect is no longer moving, the plant can 'taste' the insect in the trap and begin digesting.


Switching from defence to offence

When non-carnivorous plants come into contact with chitin, it is usually not going to turn out well for the plant -  they are under attack by herbivorous insects. Henrich and Schultz looked at the defence mechanism triggered by insects feeding on the non-carnivorous plant thale cress (Arabidopsis thaliana). They found that the plant in defence mode activates the same genes in the same pattern as the Venus flytrap in attack mode.

"In the Venus flytrap these defensive processes have been reprogrammed during evolution. The plant now uses them to eat insects," explains Hedrich.

In both cases, mechanical stimulation (whether a chewing insect or a trapped one) generates an electrical impulse that activates the release of the hormone jasmonate. In Arabidopsis this hormone begins a cascade of events that starts the production of various chemicals that deter the insect or make the leaves hard to digest. In the Venus flytrap, however, jasmonate starts the digestion of the insect and uptake of the nutrients.

So, the ancestor of the Venus flytrap had all the machinery in place for detecting insects and triggering a chemical response to their presence, but evolution managed to shift it from a defensive strategy to a very effective offence.


Source: 

"Venus flytrap carnivorous life style builds on herbivore defense strategies", Felix Bemm, Dirk Becker, Christina Larisch, Ines Kreuzer, Maria Escalante-Perez, Waltraud X. Schulze, Markus Ankenbrand, Anna-Lena Keller Van der Weyer, Elzbieta Krol, Khaled A. Al-Rasheid, Axel Mithöfer, Andreas P. Weber, Jörg Schultz, Rainer Hedrich. Genome Research, DOI: 10.1101/gr.202200.115

Comments

Popular posts from this blog

The Botanic Garden community by Andy Winfield

Easter sees one of our biggest events of the year, the Sculpture Festival, come around again. This is a lot of work to put on but an occasion that we all enjoy very much; the Garden lends itself well to sculpture and has such diverse displays that there is a perfect place for any piece of work. Dinosaurs in the evolution dell, a barn owl under the old oaks and metal flowers among the story of flowering plants; it’s good fun helping the artists place each work.
Over the weekend we have a large number of visitors enjoying the Garden, and this is what working in a place like this is all about. I get a bit misty eyed when I see people walking amongst the Mediterranean flora with classic stone sculptures placed amongst the foliage because I remember barrowing the soil to create the slope; crowbarring the huge stones up the bank; digging in sand and chippings to create the Mediterranean soil and planting the olives, rosemary, lavender that soaks up the south facing sunshine. Seeing the peo…

Christmas and the Botanic Garden

Being out and about in the Garden gives a sense of the changing of the seasons, a sense brought about by the combination of light, temperature, wildlife and, of course, plants. This is felt most keenly at this time when we are the furthest from the sun that we will be, until next year. I find mid-winter an uplifting time; leafless trees show their bones and wildlife is easier to spot. It’s amazing how much life is flitting around in an old oak tree when you take the time to look into its branches. The sky seems bigger in winter and the sunsets more vivid. This might just be that we don’t get to see them so much in midsummer, but at this time of year we see the sun rise in the Garden and set in the Garden.
From this moment the days get a little longer and we begin to see movement in the soil, small signposts to spring that don’t occur before midwinter. Snowdrops and winter aconite emerge in January; tiny and fragrant flowers emerge on shrubs such as witch-hazel, Daphne, winter flowerin…

The Beast from the East, by Andy Winfield

It's colder here in the UK than its been for a number of years, but probably not as cold as the rest of Europe as the so called ‘Beast from the East’ whips across the land. Only last week I was thinking that we’d made it through winter and the only way was spring now; primulas were flowering, blossom buds were swelling and the garden birds were flirting. Now they’re all in a frozen stasis waiting for this period of cold to end, and it will.
One thing that I have learnt in my years as a gardener is to try and enjoy this unpredictability. We often have volunteers who come from warmer countries and I’ll always remember our Columbian volunteer, Bertha. During a long cold, dark and wet spell she told me that she loved the climate here. She came from an equatorial region of Columbia and said that the sun rose at six, went down at six and the weather was either hot or hot and raining; she thought this was boring compared to here. I also remember Tom who worked here a number of years ago…